

TSAGI RESEARCH CAPABILITIES TO ADDRESS AVIATION ENVIRONMENTAL IMPACT ISSUE

Sergey Chernyshev Executive Director TsAGI, Russia

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PROFESSOR N.E. ZHUKOVSKY

Contents

- AVIATION ENVIRONMENT ISSUES
- NOISE
- □ SONIC BOOM
- **EMISSION**
- □ ALTERNATIVE AVIATION FUEL

Aviation Impact on Environment

Aircraft Environment Issues	Noise	 Health deterioration Hearing impairment Disturbances of vocal communication 	Stratosphere NOx Ozone layer destruction
	Emission	 Respiratory disorders Toxic symptoms Discomfort 	Troposphere
	Sonic boom	 Orientation response of people Starting Sleep disruption 	NOx H ₂ O Solid particles
	Greenhouse gases emissions, contrails	 Global warming Climate change 	Ground layer Noise Emission ground
	Airport environment	> Pollution	surface

ICAO Requirements in Airport Proximity

Environment Target Goals for the Russian Aviation

Target goals	Baseline (2010)	Dynamics of target goals				
Target goals		2015	2020	2025	2030	
Accidents reduction	1	2.5	5.0	7.0	8.5	
Noise reduction relatively to ICAO Chapter 4 (by EPN dB)	7	12	20	25	30	
NO _x emission reduction relatively to ICAO 2008 standards (by %)	100 (2008)	20	45	65	80	
Fuel consumption and CO ₂ emission reduction (by %)	100	10	25	45	60	

Contents

□ AVIATION ENVIRONMENTAL ISSUES

NOISE

□ SONIC BOOM

EMISSION

□ ALTERNATIVE AVIATION FUEL

Aircraft Noise Sources

1. Jet noise 2. Inlet and aft fan noise, turbine noise 3. Airframe noise

The principal components determining the noise of a modern passenger aircraft are: fan and turbine noise, jet noise and airframe noise. All the above sources of aerodynamic noise turn out to be important at different flight stages. Only a balanced reduction of all the above sources can lead to the overall desired aircraft noise reduction.

Acoustic Anechoic Chambers

AK-2

Maximum sound pressure level	160 dB
Test section volume	211 м ³
Test section dimensions	9,6×5,5×4,0 м ³
Operational frequency range	160 – 20000 Hz
Stagnation temperature	293 K

AK-11

Anechoic chamber (AC), m ³	14.0×11.5×8.0
Free volume, m ³	12.2×9.7×6.3
Reverberation chamber 1 (RC1), m ³	6.4×6.4×5.15
Reverberation chamber 2 (RC2), m ³	6.6×6.4×5.15
Operational frequency range, Hz	80 16000

Aircraft Engine Noise Reduction

Fan Noise Reduction Methods

Approach:

- To remove or weaken shocks at the fan blades
- Simultaneous optimization of aerodynamic and acoustic performance

Expected noise reduction:

- Fan tone intake noise 2 to 4 dB at take-off
- Fan tone exhaust noise up to 2 dB

Key Issues:

- Fan aerodynamics performance
- Fan blade stability and stall margin erosion
- Manufacturing cost and complexity
- Validation of CFD prediction methods

Engine Noise Reduction by Advanced Acoustic Liners

Fan Noise Reduction by Acoustic Liners

Method	Estimated noise reduction		Estimated noise reduction		TRL	Main problems
Seamless air inlet liners	Suction noise: during approach (in service with A380)	14 dB	79	Improving liners manufacturing and repair technology		
Tapered air inlets	Suction noise:	~ 3 dB	46	Aerodynamics, trade-off between cruise and climb		
Lining of air inlet lip	Suction noise:	13 dB	46	Integration with anti-icing systems		
Lining of hub surface	Acoustic power at outlet:	13 dB	34	Lacking full-scale verification data		

Low Noise Nozzle Configurations

Variety of nozzle configurations are suggested for the experimental jet noise reduction

Jet Noise Reduction Methods

Method	Expected noise reduction	TRL	Open issues	
Fixed geometry chevrons	14 EPN dB during roll and climb	69	Nacelle-Pylon integration for best aerodynamic performance	
Variable geometry chevrons	0.5…1.0 EPN dB during roll and climb	6	Reliability, maintainability and manufacturability	
Geared turbofan, m > 10 bypass ratio	Depending on operation regime	67	Higher structural weight and drag; maintainability	
Long channel with forced flow mixing	~ 12 EPN dB during roll and climb	69	long fairing nacelles for m ≈ 46, typically applied on regional and business aircraft	

Noise Control by Plasma Actuators

The concept is based on direct control of noise radiation by Dielectric Barier Discharge (DBD). Vlasov–Ginevsky effect.

Noise level improvement – 1.3 dB

V = 100...180 m/s f = 6...12 kHz D ~ 5 cm

Airframe Noise Reduction: Slats

Airframe Noise Noise Reduction: Landing Gear

Noise control concept is based on shaped chassis rack and self-tuning system for major mode noise suppression. Patent of TsAGI No. 2293890

14.10.2012

JAXA Aeronautics Symposium in Nagoya

Landing Gear Noise Reduction Methods

Method	Overall noise reduction efficiency	TRL	Expected TRL = 6 time target	Expected TRL = 8 time target	Main problems
Fairings and covers	Up to 3 dB	6			Weight, heat emission, maintainability
Low-noise chassis rack	Up to 5 dB	34	2013	2015	Structural and systems integration

Future Aircraft: Low Noise and Low Fuel Consumption

Contents

□ AVIATION ENVIRONMENTAL ISSUES

□ NOISE

- □ SONIC BOOM
- **EMISSION**
- □ ALTERNATIVE AVIATION FUEL

Low Boom Super Sonic Business Jet

Contents

□ AVIATION ENVIRONMENTAL ISSUES

□ NOISE

- □ SONIC BOOM
- **EMISSION**
- □ ALTERNATIVE AVIATION FUEL

Emission Factor OF Various Transportations ref. DLR, 2008

Air Transport Emission Modeling

Low Drag Due to Flow Control

Active Aeroelasticity Concept

- Innovative controls having high efficiency at all flight regimes: take-off, landing, cruise
- Main tasks engineering, materials, optimization, life

Main benefits of active structures :

- ➢ 4−6% increase in lift-to-drag ratio
- Control efficiency increase by 30–40%
- ➤ Fuel efficiency increase by 5–7%
- Structure weight reduction by 6–8%
- Noise reduction by 7–10 dB

Number of Engines: Environment Impact

AERIAL REFUELING

- Noise reduction in the airport area due to reduced aircraft weight up to 35–40% for long-haul airplanes
- Reduction of air transportation volumes due to increasing number of «point to point» routes
- > 15–20% less fuel burn

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PROFESSOR N.E. ZHUKOVSKY

Contents

□ AVIATION ENVIRONMENTAL ISSUE

□ NOISE

□ SONIC BOOM

□ EMISSION

□ ALTERNATIVE AVIATION FUEL

Condensed Aviation Gas Fuel

- Condensed aviation gas fuel is «greener» compared to conventional kerosene:
 - CO₂ 5–10% less emission
 - low NOx and CO
 - very low solid particles (soot)
- 2. Huge amounts of propane-butane gas are burned at the oil development sites contributing to greenhouse gas emission in the atmosphere.

Russia territory gas torches thermal wakes

Condensed Gas Fuel Aircraft

Ilyushin-114 regional turboprop

Cryogenic Fuel Aircraft

Cryogenic gas fuel Tupolev-155 test bed. Flight demonstration of cryogenic methane and hydrogen for one of its three engines

st

Tupolev-155 Aircraft

Cryoplane

Specific fuel consumption, kg/kG·h

Critical technologies:

- High-power fuel cells (2–3 MW)
- Superconductivity electric engines, the 50–60 K working temperature may be provided by the cryogenic hydrogen fuel

CENTRAL AEROHYDRODYNAMIC INSTITUTE NAMED AFTER PROFESSOR N.E. ZHUKOVSKY

14.10.2012 A Aeronautics Symposium in Nagoya