

Agenda

- 2. CleanSky 2 project
- 3. MISSION project
- 4. dSPACE in MISSION
- 5. Collaboration approach
- 6. Summary

What Does dSPACE Do?

- Develop tools (hardware and software) for developing control systems and electronic control units
- dSPACE = digital Signal Processing And Control Engineering

Who Uses dSPACE Tools to Develop Control Systems?

■ Automotive industry (80% of our customers) → Development partners

- Approx. 1,900 employees worldwide, including 1,500 engineers and software scientists
- 30 years of experience; privately owned, independent company, visionary founder
- Continuously growing R&D and engineering capacities and capabilities, investing in technology

dSPACE GmbH Germany | Paderborn Pfaffenhofen, Böblingen, Wolfsburg

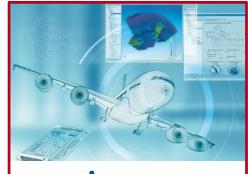
dSPACE Inc. USA | Detroit

dSPACE engineering d.o.o. Croatia | Zagreb

dSPACE Japan K.K. Japan | Tokyo, Nagoya, Utsunomiya, Osaka

dSPACE SARL France | Paris

dSPACE Ltd. United Kingdom |


dSPACE Mechatronic **Control Technology Co.** Cambridge, Warwick China | Shanghai, Beijing

What Application Fields is dSPACE Involved in?

Automotive Industry

Aerospace

Medical Engineering

Electric Drives

Commercial Vehicles

Research and Education

Hybrid, Pure Electric Flight

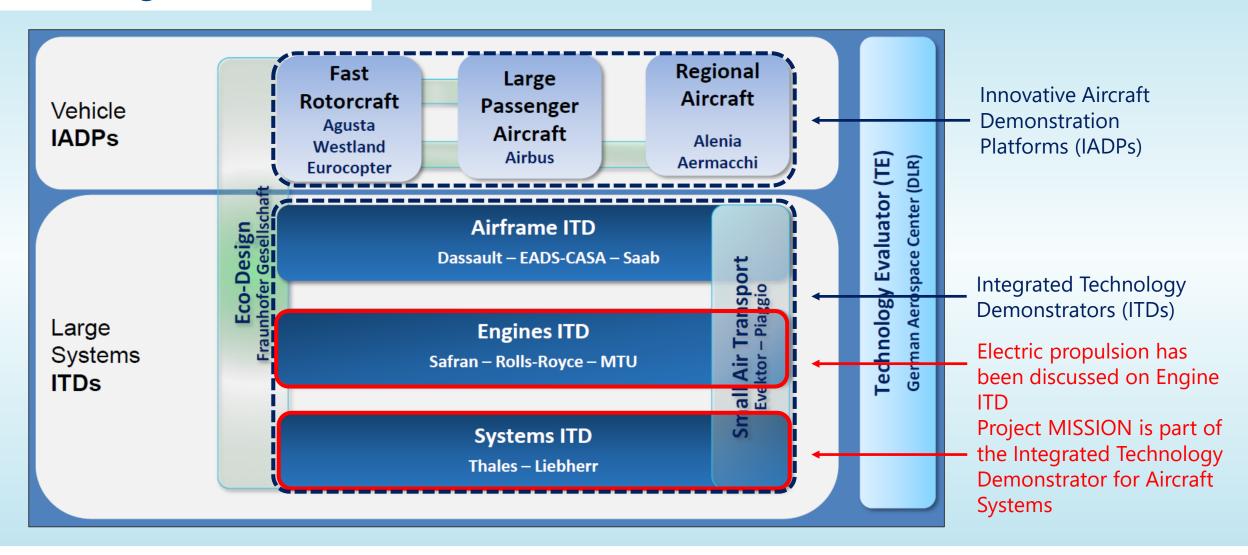
Convincing to develop of electric flight

ACENTISS GmbH

e-Genius S / University of Stuttgart

Clean Sky 2 (CS2)

- Currently largest European research program with budget of €4 billion (2014-2023)
- Funded by public-private partnership between European Commission and European aeronautics industry
- Program aims at developing innovative, cutting-edge technology for reducing
 - Gas emissions (CO_x and NO_x)
 - Noise levels produced by aircraft
 - Aircraft development time and cost
- Over 600 participating entities in 27 countries including prominent aircraft manufacturers, system suppliers and research organizations



CS2 Program Overview

Hybrid Electric Propulsion and Electrical Systems in Demonstration area

Hybrid Electric Propulsion
 It has been discussed on
 "Breakthroughs in propulsion
 Efficiency".

In 2019, in the field of the hybrid electric propulsion, the design and development of several key technologies (generator, power electronics, electrical motors) will continue.

Intermediate test results of the hybrid electric propulsion system will be reported.

 More Electrified and Full Electrified

Ref-	Theme	Demonstration area							
Code									
1A		Advanced Engine/Airframe Architectures							
1B	Breakthroughs in Propulsion Efficiency	Ultra-high Bypass and High Propulsive Efficiency Geared Turbofans							
1C	(incl. Propulsion-Airframe Integration)	Hybrid Electric Propulsion							
1D	,	Boundary Layer Ingestion							
1E		Small Aircraft, Regional and Business Aviation Turboprop							
2A	Advances in Wings, Aerodynamics and	Advanced Laminar Flow Technologies							
2B	Flight Dynamics	Regional Aircraft Wing Optimization							
3A	Innovative Structural / Functional Design	Advanced Manufacturing							
3B	- and Production System	Cabin & Fuselage							
3C	- and Froduction System	Innovative Solutions for Business Jets							
4A	Next Generation Cockpit Systems and	Cockpit & Avionics							
4B	Aircraft Operations	Advanced MRO							
5A	Novel Aircraft Configurations and	Next-Generation Civil Tiltrotor							
5B	Capabilities	RACER Compound Helicopter							
6A	Aircraft Non-Propulsive Energy and	Electrical Systems							
6B	Control Systems	Landing Systems							
6C	Control Systems	Non-Propulsive Energy Optimization for Large Aircraft							
7A	Optimal Cabin and Passenger	Environmental Control System							
7B	Environment	Innovative Cabin Passenger/Payload Systems							
8A	Eco-Design								
9A	Enabling Technologies								
	Technology Evaluator								

Project for Electric Propulsion

Electric hybrid propulsion

Ground Test Bench has been *TRL4 in 2019, and it will reach TRL5 in 2022, TRL6 in 2023.

Level	Technology Readiness Level
4	Validation in laboratory environment
5	Validation in relevant environment
6	demonstration in a relevant environment (ground or space)

State of play as of December 2017						CDR A FT PDR Testing/GT COR ET = Enabling Technology Demonstrator / Technology Streams Maturing Over Time										
Theme	Demonstration Area	Demonstrator /Technology Streams	Number of ETs	TRL at End	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023		
	Advanced Engine/Airframe Architectures	UHPE Integration	tbd	tbd TRL Maturity												
		LPA-01-D2: Advanced engine integration driven fuselage ground demo	3	6 TRL Maturity				TRL3		TRL4		TRLS	TRL6			
		ENG - Demonstrator 1 WP A-1.2 UHBR configuration	1	6 TRL Maturity		\Pi	4		TRL4		TRLS	TRL6				
		ENG - Demonstrator 1 WP A-1.2 CROR configuration	1	5 TRL Maturity	TRL4			Δ	TRLS			11120				
	Ultra-high Bypass and High Propulsive Geared Fans	ENG - Demonstrator 5 - VHBR – Middle of Market Technology	5	6 TRL Maturity	TRU	<		♦	TRL3		TRL4		TRLS	TRL6		
		ENG - Demonstrator 6 - VHBR – Large Turbofan Demonstrator UltraFan™	5	6 TRL Maturity			(TRL3		TRL4	4	TRLS	TRL6		
		ENG - Demonstrator 2 - UHPE	5	5			\	• •	I RES	TRL3			TRL4	TRLS		
Breakthroughs in		ENG - Demonstrator 4 - Adv. Geared Engine Configuration (HPC- LPT)	5	TRL Maturity 5				<		TRL3	Δ	TRL4	TRL5	TRES		
Propulsion Efficiency (incl. Propulsion-		LPA-01-D8: Radical Configuration Flight Test Demonstrator	1	TRL Maturity 6						TRL3	♦		TRLS	\		
Airframe Integration)		LPA-01-D10: UltraFan Flight Test Demonstration	4	TRL Maturity 6					TRL4	-	TRLS	TRL6				
		LPA-01-D3: Validation of scaled flight testing	1	TRL Maturity 4					TRL4		TRLS	TRL6				
	Hybrid Electric	LPA-01-D9: Hybrid Electric Ground Test Bench	4	TRL Maturity 6						TRL3	TRL4					
	Propulsion Boundary Layer	Boundary Layer Ingestion	tbd	TRL Maturity tbd				TRL3		TRL4			TRLS	TRL6		
	Small Aircraft, Regional and	ENG - Demonstrator 3 - Business aviation / short range Regional TP Demonstrator	5	TRL Maturity 5		♦	\rightarrow	♦		Δ						
		ENG - Demonstrator 7 - Small Aircraft Engine Demonstrator	5	TRL Maturity 6			<	*	Δ	TRL3		TRL4	TRL5			
	Business Aviation Turboprop	ENG - Demonstrator 8 - Reliable and more efficient operation of	5	TRL Maturity 4		4	TRL3	TRL4	TRL5	TRL6						
small turbine engines Source : Clea				TRL Maturity	oint	TRL3	dart	akin	TRL5	E\/EI	OPI	VIEN	IT DI	۸۸۱		

Source : Clean Sky 2 Joint Undertaking DEVELOPMENT PLAN

MISSION¹⁾ – Project Consortium

1) Modeling and Simulation Tools for Systems Integration on Aircraft

²⁾ Model-in-the-Loop, ³⁾ Virtual Processor-in-the-Loop

⁴⁾ Software-in-the-Loop, ⁵⁾ Hardware-in-the-Loop

Project Role:

UTRC Ireland **UTRC ALES Italy** **Key Experience:** Aircraft systems technologies & integration

Design & optimisation platforms, multi-domain modelling, MIL²⁾, VPIL³⁾

Key Experience: Aircraft system design, production & certification (system supplier)

Motor Drives System Centre **Goodrich Actuation Systems** **Project Role:** Requirements definition, system design & testing

Key Experience: Systems engineering & simulation software (SimulationX)

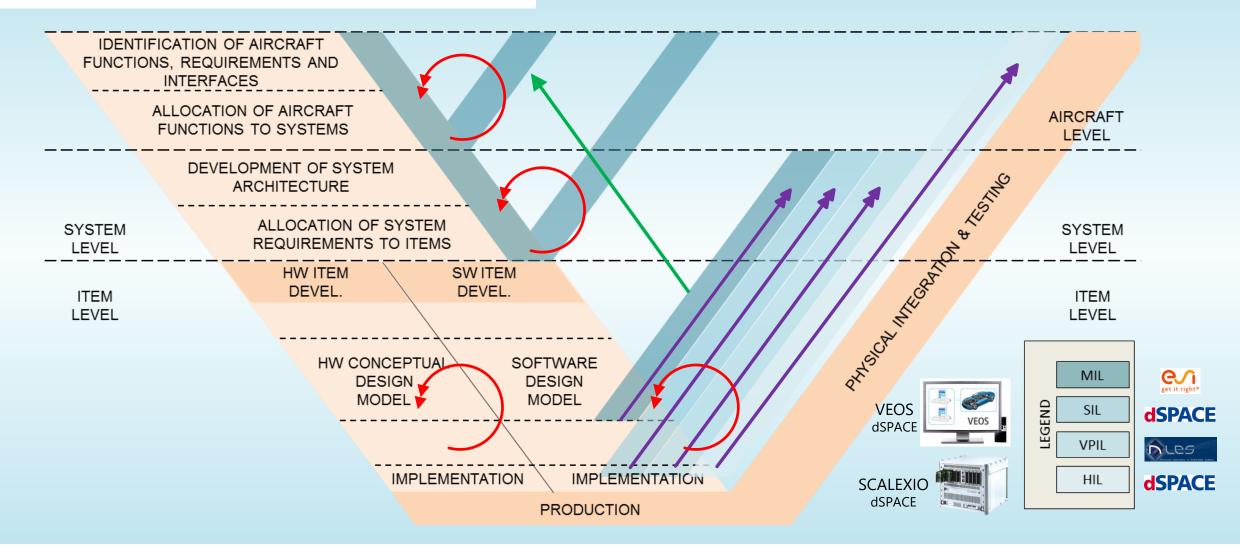
Project Role: Modelling & simulation environment, process & tool integration, MIL

Key Experience: ECU development & test, engineering tools, real-time simulators

Project Role: Virtual testing, SIL⁴⁾, HIL⁵⁾

MISSION – Scope and Objectives

- Improve design capabilities at aircraft and system level through integrated multi-physics modelling and multi-objective optimization
- Achieve significant reductions in development time, cost and rework throughout the design and verification process
- Support technology integration and demonstration within Clean Sky 2 through an open and neutral environment for integration of various technologies
- **Target wide dissemination** of the developed framework to strengthen its exploitation plan through regular interaction with framework stakeholders



MISSION – Virtual Testing Overview

Liebherr Test Bench – Smart Electrical Wing

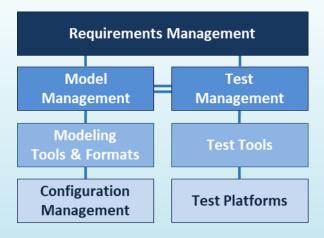
Objectives of system supplier

- Development of electrical wing architecture
- Dedicated demonstration facility

dSPACE contributions

- Cockpit control digitization
- Spatially distributed test system
- Flexible, scalable, modular actuator control interface
 - Simulation of one or more actuators possible
- Electrification of actuator test rig
 - Drive side (available) and load side (planned)

©2018 Liebherr Aerospace Lindenberg



Summary and Outlook

- MISSION aims at providing a seamless and integrated workflow from aircraft design to verification across different modelling domains and virtual testing environments
- Solving real problems of the aerospace industry through close collaborations with aircraft manufacturers and system suppliers
- Ongoing commitment: Virtual testing demonstrators with aircraft system suppliers in Clean Sky 2 ITD Systems
 - HIL* testing of Power Drive Electronics (PDE) for electrical actuation
 - High-voltage e-load emulation to enable early stand-alone testing of PDE on electrical power level (real device under test)
 - More efficient development processes for aircraft electrification by using state-of-the-art virtual testing technologies

*HIL: Hardware-in-the-Loop

Important Information!

© 2019, dSPACE GmbH

All rights reserved. Written permission is required for reproduction of all or parts of this publication.

The source must be stated in any such reproduction.

This publication and the contents hereof are subject to change without notice.

Benchmark results are based on a specific application. Results are generally not transferable to other applications.

Brand names or product names are trademarks or registered trademarks of their respective companies or organizations.

