DENSO

Crafting the Core

航空機用電動モータの開発

（株）デンソー
EcoMobilityシステム開発部中田 真吾

デンソーが電動航空機に取D組む理由 －自動車／地上交通の変化と空の移動革命－

地上交通の変化－パラダイムシフト－

DENSO
Crafting the Core

100年前の出来事－Before－

1900年のニューヨーク5番街。人々の交通手段は馬車だった。

100年前の出来事－After－

T型フォードが発売され，移動手段が馬車から自動車へ様変わり。 その後100年，自動車はその本質を維持したまま進化してきた．

100年前の出来事－After－

内燃機関で走わ，閉ざされた幅境の中でドライバーが運転し，自動車を所有して使用する．それが…

社会環境の変化

－地球環境の変化
温暖化•大気汚染•都市化

－テクノロジ - の進化情報化（ICT），知能化（AI）

－価値の多様化，消費行動の変化「所有 \rightarrow シエア」

社会環境の変化によって地上モビリティは大ききく変わろうとしている

自動車－CASE－

Connected Autonomous Shared \＆Services Electrification

つながる自動運転
 シェアリング（亚存）
 電動

技術革新と社会変化にて，T型フォード以来の革命期を迎えている
DENSO

地上交通全体－MaaS（Mobility as a Service）

自動車を含めた交通手段がシームレスに繋がり， すべての人が自由•快適かつ，安価に移動できる社会

将来のモビリティ社会像

空飛ぶクルマは新たなモビリティー社会の象徴的存在となる

空の移動が身近になる事の嬉しさ

点から点の直線移動

地上の移動 ：目的へは大回りが必要。。。空の移動 ：目的地へ一直線

渋滞の回避

地上の移動：都市內は大渋滞。。。空の移動 ：都市内移動も渋帯知らず

空の移動は移動時間を大幅に短縮し，快適な移動を実現する．

空飛ぶクルマとは？－空の移動を身近にする要件－

【実現手段】

eVTOL
electric Vertical Take－Off and Landing （電動垂直離着陸機）

$$
\begin{aligned}
& \text { デンソーが定義する } \\
& \text { "空飛ぶクルマ" }
\end{aligned}
$$

eVTOLが空の移動を身近な移動手段に変える主役となる

空飛ぶクルマとは？－空の移動を身近にする要件－

マルチローター化により，最重要要件である安全性も大きく向上

4

電動航空機用モ一夕開発

－クルマ用モータと空用モータとの違いについて－

クルマと空の違い－使われ方－

※EPU ：Electric Propulsion Unit \Rightarrow モータ＋インバータ

		クルマ : HV, EV	空 ：eVTOL（5人乗想定）	重要技術課題
機体総重量		$\sim 2000 \mathrm{~kg}$	2000～3500kg	$\begin{aligned} & >\text { 軽量化 } \\ & =\text { =高トルク密度化 } \end{aligned}$
	$E P U$（全数）	$\sim 50 \mathrm{~kg}$	$\sim 300 \mathrm{~kg}$	
	バッテリ	$\sim 400 \mathrm{~kg}$	$\sim 700 \mathrm{~kg}$	
$\begin{aligned} & \text { EPU } \\ & \text { (個別) } \end{aligned}$	電源電圧	$\sim 800 \mathrm{~V}_{\mathrm{dc}}$	$\sim 800 \mathrm{~V}_{\mathrm{dc}}$（将来 $1000 \mathrm{~V}_{\mathrm{dc}}$ ）	＞高トルク連続駆動 ＞泠却性
	$\begin{aligned} & \text { 出力 } \\ & \text { • } \end{aligned}$	$\begin{aligned} & \sim 200 \mathrm{~kW} \\ & \sim 200 \mathrm{Nm} \end{aligned}$	$\sim 200 \mathrm{~kW}$ MAX数 1000 Nm	
	冷却方式	液冷	液冷，空冷	
1回あたり航続距離		$\sim 1000 \mathrm{~km}$	$\sim 300 \mathrm{~km}$	＞信頼性，冗長性 ＞耐故障，メンテ性
総航綕距離		~ 24 万km	~ 300 万km	
保守		基本，無交換	定期メンテ，部品交換	
安全性		退避走行による安全確保	冗長性（機能維持）による安全確保	

軽量化，冷却性，信頼性 の両立

クルマと空の違い－モータのトルク／回転数特性－

－クルマ用モータ特性カーブ

回転数
$>$ 可変速度／トルク 特性
＞低トルク駆動（市街地）が大半 \Rightarrow 省燃費三高効率
－空用モータ特性カーブ

＞ローター負荷トルク \propto 回転数 ${ }^{2}$ 特性
＞高トルクでの連続駆動
\Rightarrow 冷却性
＞緊急時（1fail）の高トルク特性
\Rightarrow 高信頼性

モータ要求：軽量化，高トルク，冷却性，高信頼性

クルマと空の違い－モータ方式＿磁気回路－

※Segment Conductor

低NV，小型化

－空用モータ
－

空用モータには軽量化技術を採用

空とクルマの違い－モータの構造材料－

クルマ用

		鉄 （S45C）	SUS （SUS304）	アルミ （A6061）	チタン （Ti6Al4V）	MMC＊ （Al／SiC）	CFRP （プリプレグ）
密度	$\mathrm{g} / \mathrm{cm}^{3}$	7.9	7.9	2.7	$\mathbf{4 . 4}$	$\mathbf{2 . 8}$	$\mathbf{1 . 8}$
引張強度	MPa	690	520	309	$\mathbf{9 8 0}$	$\mathbf{4 9 5}$	$\mathbf{2 9 1 0}$
比強度	$\mathrm{kNm} / \mathrm{kg}$	88	65	114	$\mathbf{2 2 1}$	$\mathbf{1 7 4}$	$\mathbf{1 6 1 7}$
熱伝導率	W / mk	45	15	~ 180	$\mathbf{7 . 5}$	$\sim \mathbf{1 5 0}$	$\sim \mathbf{2 5}$

高比強度 \＆高熱伝導材料を活用

クルマと空の違い－冷却要求－

 クルマ液泠（水泠／油泠）

空（eVTOL）

空泠

シンプルなシステム構成で，

- 重量低減に貢献
- 安全性向上に貢献
＜課題＞
100kW級モータの放熱を如何に空冷で実現させるか？
冷却系含めたTotalで高い安全性確保
\Rightarrow 個々の製品への安全要求の増加
【必要機能】
モータ＋泠却系（熱交換機（泪滑术ンプ／冷媒／配管）
\Rightarrow システム重量の増加
【安全要求】課題は大きいが空では空冷化がメジャー要求となる．

空冷化への挑戦－ローター下流流速の解析－

［目的】

- 半径方向速度分布
- 軸方向速度変化
§モーターが得られる泠却風の定量化

流入速度：低速時

流速コンター図

ローターから得られる泠却風を分析し，冷却系の設計へ反映

空冷化への挑戦－強制空冷－

【ローター下流流速解析結果】
流入速度：低速時

流入速度：高速時

モータ出力軸にファンを搭載し，冷却風を導入

ローターからの流入風はモータ搭載位置／運転条件／プロペラ仕様で大きく異なる

フアン搭載による強制空冷方式も平行して検討

自動車から空へ空から様々なモビリティーを電動化

DENSO Crafting the Core

