航 空 プログラム－ユ－ス
 No．\square
 2006
 Summer
 ISSN 1881－2570

［特集］

次世代超音速旅客機の研究

環境にやさしい静かな巨体が

超音速で大空を［研究現場から］
低コスト複合材を用いた航空機構造の研究

『航空プログラムニュース』創刊にあたって

航空プログラムグループ統括リーダ
坂田 公夫

2003年10月に統合して2年経った昨年10月に，宇宙航空研究開発機構 （JAXA）は航空宇宙の基盤研究を担う総合技術研究本部から独立させて航空プログラムグループ（APG）を発足させました。

新設のAPGは，ロケットや衛星による宇宙開発を進める本部に並んで，航空機 の製造と運航分野が求める研究開発の活動を内外からはっきりと見えるようにし，社会と直に接しながら，現在から将来にかけてのニーズを的確にとらえて研究開発を進めるグループです。その構成や任務は次ページの通りです。その目標は，産業基礎力向上を支援し，次世代を先導し，現在から将来にわたる安全運航を技術的に支え，さらに未来技術分野を開拓することであり，可能な限り技術の実用化に向けた，まとまりのあるプログラムとして研究開発を進めることとしています。特に超音速チームにおいて，昨年の組織発足時とほぼ同時に，設計技術の実証 を目指して進めてきたロケット実験機の飛行実験をオーストラリアで成功させたこ とは記憶に新しいことと思います（特集記事参照）。グループの構成員は90人余 りですが，母体となっている総合技術研究本部から研究員が併任で参加しており，延べ人数は150人に達しています。産業や大学，あるいは行政との密接な連携を重視して行きたいと思います。これらのグループの活動を皆さんに知っていただき， ご要望やご意見をうかがい，あるいは共同での研究を提案していただくことを大 いに期待し，歓迎しています。そのためにこちらからの情報発信が不可欠と考え， その一つとして2006年7月から『航空プログラムニュース』を刊行する運びとなりま した。出来るだけ分かりやすく最新のニュースをお届けし，広く皆さんにお読みい ただきたいと思います。

航空は，20世紀の発明に始まる直線的な発展から，21世紀の多様で立体的な拡大へと向かいます。このため安全と環境，そして人の自由なモビリティをキー ワードにした高度で信頼性の高い技術が求められています。

JAXAは，APGを中心にこれらの課題に挑戦してまいりますが，多方面との連携と協力，そして皆さんのご理解とご支援が不可欠と考えております。さまざま な接点や交流の機会を作ってまいりますが，このニュースもその一つとして皆さん に育てていただければと願っております。

航空プログラムグループ（APG）発足の背景として，ま ず，2005年3月に発表されたJAXA長期ビジョンがありま す。この中に「我が国の航空産業が将来の基幹産業と なることを目指して，世界に先行する我が国独自の技術開発を行います。さらにマッハ5クラスの極超音速機の技術を実証します」とあり，今後の航空技術の長期的な研究開発方向が提示されています。

一方で，JAXAにおける航空科学技術の中期的な推進の方向は，文部科学省に設置された航空科学技術委員会において議論•策定されることとなっており，2003年5月に，同委員会が策定した「航空科学技術に関する研究開発の推進方策」では，基本方針として「1．社会から の要請に応える研究開発」「2．我が国が得意とする先行的基盤技術の研究開発」「3．次世代を切り拓く要素技術の研究開発」の3項目が掲げられています。APGは，こ れらの目標への取り組みを着実に実施して，航空技術研究開発の確実な進行を内外に明示することを目的として発足しました。

この推進方策を受けて，JAXAの航空プログラムの研究開発の中期計画が定義されており，その中で「社会的要請に応える航空科学技術の研究開発」という項目の下に，民間航空機技術開発の計画が策定されています。

その概要は，まず第一の「社会的要請への対応」の項目の中では，11国産旅客機高性能化技術の研究開発，
（2）クリーンエンジン技術の研究開発，（3）運航安全技術の研究，（4）環境保全•航空利用技術の研究，がサブ項目と して挙げられています。第二の「先行的基盤技術の研究開発」の項目では，当時，研究開発項目となっていた「超音速ジェット実験機」研究開発構想の中断を受けて， ⑤コンピュー夕による先進設計技術の飛行実証研究開発，の方策策定が挙げられており，現在の案では「静粛超音速研究機構想」として，次期航空プログラムの中核的な研究開発と位置づけられています。第三の「次世代航空技術の研究開発」の項目では，（6）成層圈プラッ トフォーム飛行船システムの研究，（7）次世代超音速機技術の研究開発，（8）未来型航空機技術の研究開発， がサブ項目として挙げられています。このことはAPGが，我が国の航空行政，運航を含む航空産業の中核に位置して，研究のための研究ではなく，社会の要請に応え る研究を遂行することを理想とするものです。この中期計画を達成するために，APGには5個のチームが設けら れて，（1）～⑧のサブ項目に対応した研究を実施してい ます。

私たちは，行政を含む我が国の航空事業サイクルの中核にAPGが位置して，民間航空機開発への技術チャレ ンジを支えるとともに，役割分担をさらに深めるために，日夜最大の努力を続けています。

組 織

宇宙利用推進本部

総合技術研究本部

宇宙科学研究本部

航空プログラムグループ〈航空科学技術の研究開発〉

特集
 －次世代超音速旅客機の研究

瓄境にやさしい静かな巨体が超普速で大空を

21世紀は，超音速旅客機の時代だといわれています。
わたしたちが気軽に超音速旅客機を利用するためには，何が必要になってくるのでしょう？
そのためにJAXAが進めている研究について紹介します。

音速を超えることができれば，

目的地に速く着く

「ジャンボジェット」の愛称で親しまれているB （ボーイング）747型機をはじめとする大型旅客機 は，日本国内はもとより遠く海外まで，わたしたち を様々な場所へ運んでくれます。とても便利な乗り物ですが，アメリカやヨーロッパなどの遠方へ行く ときには，十何時間もの長時間シートに座りつぱな しということもあります。もし，もつと高速で飛ぶ

ことができれば，機内での拘束時間も短くなり，よ り便利で快適になることでしょう。しかし，単純に飛行速度を上げることはできません。大型旅客機は，音が進む速さ（音速）より少し遅い速度で飛んでい ます。飛行速度が音速を超えてしまうと，衝撃波が発生し，これが地上に到達するとソニックブームと呼ばれる雷のような轟音となってしまうからです。 ソニックブームは，音だけではなく衝撃も大きく，地上まで届くと窓ガラスを割ってしまうなどの被害を起こすおそれがあります。

そんな無理をしてまで速く飛ぼうとしなくても， という意見もあると思います。しかし，速く飛ぶこ とには先に述べた以外にも様々な利点があります。例えば，「エコノミークラス症候群」を減らす可能性 です。「エコノミークラス症候群」とは，長時間のフ ライトなどで同じ姿勢をとり続けることにより血液中に血栓ができ，呼吸困難や最悪の場合には死に至ることもある症状です（実際には，ビジネスクラ スやファーストクラスでも起こります）。機内でス トレツチを行うなど，身体を動かすことでも予防で きますが，飛行機に乗つている時間自体を短くでき れば，それだけ発症のおそれは少なくなります。

S3TDを飛ばして

「静かな超音速機」開発の技術を手に入れる

2003年10月まで，音速の2倍の速さで飛ふ旅客機として，フランスとイギリスが共同開発したコン コルドという超音速旅客機が定期運航を行つてい ました。すでに飛んでいた機体があるのだから，速 く飛ぶこと自体はそれほど難しくないことのよう た思えます。しかし，コンコルドはりニツクブーム やさンジンによる騒音，排気ガス，燃費の悪さによ る運賃高など，様々な問題点を抱えていました。

図2 静粛超音速研究機のイメージ図
再び超音速旅客機が大空を飛ぶためには，「経済性」と「環境適合性」を兼ね備えた次世代超音速旅客機を開発する必要があります（図1）。JAXAでは，低騒音化技術などを開発目標に，「静粛超音速研究機 （図2）」による飛行実証を計画しています。

「静粛超音速研究機」の英文名称はSilent Supersonic Technology Demonstratorです。太字の部分をとりS3TDという略称をつけました（S3に着目 し「エスキユーブ」と呼んでいます）。S3TDでは，以下 4項目の飛行実証を目指しています。

1．超音速飛行時の空気抵抗とソニックブームを抑 えた機体形状の設計技術の実証

通常，飛行機を設計する際には，空中に浮く力（揚力）は大きく，空気抵抗は小さい，効率のよい機体を目指します。今回は特に空気抵抗の低減に着目し，

次世代超音速旅客機の実現に必要な技術図

経 済 性

軽量化

機体の重さを軽くする技術

低抵抗化

空気抵抗を小さくする技術

エンジン低燃費化

軽くて燃費のいいエンジンの技術

環境適合性

```
ソニックブーム低減
ソニックブームを小さくする技術
```


空港騒音低減

空港近くの騒音を小さくする技術

排ガス清浄化

排ガスをきれいにする技術

加えて，ソニツクブームも低減する形状を目指して設計を行います。超音速飛行時の空気抵抗とソニツ クブームを同時に最小化できる「多目的最適化」と いう設計手法を開発し，適用します。

2．離着陸時の空港騒音の低減

現在運航している旅客機にも当てはまることで すが，空港周辺での騒音問題として，旅客機本体や エンジンなどから出る音が問題となつています。そ こで，通常の航空機では主翼の下に取り付けている エンジンを胴体の上に置くことによるエンジン騒音遮断の効果を実証します。

3．先進飛行制御技術

S3TDは，2005年に行つた小型超音速実験機によ

る飛行実験（コラム参照）と同様に，実験機が自動で操縦を行う「完全自律飛行制御」により飛行します。前回 の実験では，ロケツトで打ち上げ，着地はパラシユー トとエアバツグを使用しましたが，S3TDでは離着陸 まで自動で行い，その先進飛行制御技術を検証します。

4．複合材構造技術

軽くて丈夫な複合材料の研究はJAXAの得意分野です。 その複合材を超音速機に適用する技術を実証します。

S3TDは，JAXAがこれまでに蓄積してきた最先端 のコンピユータ設計技術を最大限に駆使して設計 を進めています。これから3年ほどかけて最終的な形状を決定し，2012年ごろに飛行実験を行いたい と考えています（図3）。

静粛超音速研究機計画の概要区s

次世代超音速旅客機を

主体的に開発するために

ビジネスジェットのような小型超音速機の機体に ついては，すでにアメリカなどで構想が立ち上げら れ，研究が行われています。ビジネスジェットの規模であれば，開発費も一国でまかないきれますが， 200～300人近く乗れる大型超音速旅客機となる と，とても一国での開発は不可能です。そのため，各国が協力して研究開発を行う流れが出てきています。 JAXAでは「誰もが利用できる次世代超音速旅客機 （図4）」を自指して，研究開発を進めてきました。今後も，S3TDによる飛行実証を通して超音速機開発技術を蓄積し，国際共同開発に主体的に参加できる体制を整えていきます。
それほど遠くない未来には，人にも地球にも優し い超音速旅客機が，大空にその翼を広げていること でしょう。

عロリレாா ・コラム

図4「誰もが利用できる次世代超音速旅客機」が目指す性能
\longrightarrow

マッハ2の滑空，

小型超音速実驗機の飛行実験成功！
2005年10月10日，オーストラ

 リアにあるウーメラ実験場にて，小型超普速実験機の飛行実験を行いました。使用した実験機は，「逆問題設計法」というこれまて にない設計方法てつくられまし た。実験では，音速の2倍の速さ て機体回りの空カデータを取㣎 するとともに，設計法の検証と，無人機による飛行実験技術の書積も行いました。

小型超音速実験機による飛行陚験の樣子

Research
 Report

研究現場から

低コスト複合材を用いた航空機構造の研究

国産旅客機チーム

航空機を少しでも軽く作ることができれば，燃費の向上をはじめとして，多くの点で経済的 なメリットが得られます。また，環境にもよい効果 があります。複合村を用いることによって航空機の構造は相当軽くなると期待されるため，これまで多 くの研究が行われてきました。しかしながら，従来 のアルミ合金構造に比べて複合材構造は製造コス トが高いため，低コストで高品質な製造技術の開発 が求められています。そこで，国産旅客機チームで

写真1材料の強度を調べる実験

は真空樹脂含浸製造法（VaRTM）という新しい技術に着目して航空機複合材構造の研究を行つています。
合材にはいろいろな種類がありますが，ここ信 では炭素の繊維を樹脂で固めた材料を対象 としています。通常，複合材構造は，プリプレグとい う半硬化のシート状複合材を積み重ねた後，焼き固 めて作ります。この方法では，組立工数が多く，また，高価なオートクレーブ（加圧炉）が必要で，コストが高くなる原因となっています。
真空樹脂含浸製造法では，繊維のみを所定の形状 に積み重ねた後に樹脂を流し込むため，プリプレグ やオートクレーブを用いないので大幅なコスト削減が可能です。低コスト複合材と呼ばれる所以です。 すでに，風車の羽や小型船舶などに用いられていま すが，航空機に適用するには繊維の含有率を高めつ つ安定的に高い品質を保つための技術開発が必要 です。

体的には，（1）補強平板（2） 2 m 長さの主翼部分構造（3） 6 m 長さの実大主翼構造へと段階的に試作しつつ，成形性の確認や力学特性の取得（写真1） を進めています。（1）ではZ型とハット型の 2 種類の ストリンガー（補強材）で補強した $2 \mathrm{~m} \times 1 \mathrm{~m}$ の平板 を一体として成形し，良好な成形結果が得られました。 また，力学特性の取得を行いました。
続いて，（2）中型旅客機の主翼外翼の 2 m 部分を模擬した，曲面を有する補強外板と桁一体構造の試作 を行いました（写真2）。ストリンガーの様式は実構造での検査性を考慮してブレード型としました。ま た，外板や桁ウェブに板厚変化部，アクセスホール周辺に補強のための厚肉化など，成形上の課題と なる要素を盛り込みました。
この成形では，厚肉部の一部で樹脂の含浸にム
（後列左より）
青木雄一郎，平野義鎭
（前列左より）
永尾陽典，中村俊哉

ラが見られましたので，6m主翼構造の試作に先立ち，さまざ まな改良を行いました。例えば，板厚によって樹脂の流れ方が異 なり，また長時間の含浸では樹脂の部分的な硬化が始まつて末含浸の原因となるため，樹脂注入口の場所や注入順序などをパラ メータとして最適な成形プロセ スを見出しました。現在は，こう して改良された方法により，（3） 6 m 主翼構造の試作を進めてい ます（写真3）。

写真2 $2 m$ 主翼部分模型

本製造法を旅客機主構造へ適用した例はあ りませんので，型式証明（航空機の設計が，国が定めた基準に適合していることの証明）における課題を明確 にする必要もあります。こ れは航空機の安全上非常に重要で，国土交通省航空局の指導と協力を得ながら研究 を進めています。このように，私たちは，さまざまな観点か ら低コスト複合材を本格的 に航空機に適用する技術の確立を目指しています。
（中村俊哉）

と A また をで $お$ た
聞り後
かた 」
せい A
$<こ \mathrm{X}$

トけご	
哭	
－	
No＋P6＂م皆	
＊	

 دNこれたが

 ＋ 6 6＋

 N二肘」＋1100

 は
生
懸
敆
取
以
組
た
た
思

$$
\text { H6to }{ }^{\circ}
$$

$$
\begin{gathered}
\text { ま } \\
\text { す。思 } \\
\text { い }
\end{gathered}
$$ ＂この日NU

 －Mraçざuirt

 \qquad

施設公開イベントで

 J°

 て
と
な
人
？
何
を
し
し
に

 H6to ${ }^{\circ}$

MISSION：

どのエアラインで行くかより，
どのエンジンで行くかを選べる時代が
くるかもしれません

 UTUFN

究
す
z
環
境
し
し
は
は
し
は

 ち
か
ま
す
り
に
た
た
く
さ
吉田
Iミッ．
大学
燃
燁
や
流
体
や
数
値
解 う
う
時
に
こ
に
に noundsvichmrend
 $\begin{array}{cc}\text { はだ技 } \\ ク & \text { けで術 }\end{array}$

