

No．\square ？

［特集］
新しい航空交通システムを実現させる「DREAMS」
小型機を
もつと身近で
安全で便利な
乗り物に
［研究現場から］
その1
環境に優しくシンプルな
小型航空エンジン用燃焼器
の研究開発
その2
飛行船のフライトシミユレータ

大型機と小型機の違いは大きさだけではありません。
それぞれの得意なところを生かせたら，これまで以上に便利な交通手段になるでしょう。
今回は，翼の形やエンジンの性能とは別のアプローチで，航空機の安全性や利便性を向上させるために行われている研究を紹介します。それによって私たちのくらしはどう変わるのでしょうか。

「遠く，速く」

の次に
一度に多くの人や物を，遠くまで運ぶことができ る航空機。それによって私たちは様々な恩恵を受け てきました。いまや航空機のないくらしは想像がで きないほどです。

しかし，国内の移動では，例えば自宅から空港まで， そして空港に到着してからの搭乗手続き，やつとシー トに腰を下ろしてからは離陸の順番待ち，着陸後は空港から目的地までの移動と，飛行時間以外に多く の時間を費やしているのが実情です。

これは，旅客機か離着陸できるような大きな空港 の数が限られているからです。ならば，身近にある小さい飛行場やヘリポート（図1）から，小型機を使つ て目的地まで行き，Door to Doorの移動時間を短縮 できる航空交通システムを構築しようという構想が あります。

必要な機能を
機体に搭載するという発想
米国などでは，小型機を用いてオンデマンドな運航を行う「エアタクシー」と呼ばれる事業が普及し つつありますが，我が国での小型機を用いた旅客輸送は，離島との間を結ぶ地域航空（コミュータ）な どに限られています。小型機による航空交通システ ムの発展を阻む要因として以下があげられます。
－小さい飛行場やへリポートには，天候不良の際に安全連航を支援する計器着陸システムなどの設備が整備されていないため，就航率が悪い（大型機の就航率は99\％程度，小型機は80\％程度）。
－小型機は大型機と比べて，事故発生率が高く（10万飛行時間当たりの事故発生率は大型機が0．2件，小型機が 7.9 件），またその原因の約 70% はヒユーマ ンエラー。
－小型機の運航に適した航空路が設定されていない。特に首都圏周辺では空域の制約が多く， また騒音の問題などもあって自由な経路設定が行えない。
JAXAでは，これらの問題を解決 しょうと「DREAMS」の研究を行っ ています（図2）。

DREAMSとは，Distributed and Revolutionary Efficient Air－safety

DREAMS概念図

Management System（分散型高効率安全運航システ ム）の略で，これまで地上からの支援に依存してい た空の交通整理のための機能の一部を，航空機に搭載されたコンピュータに分散させることによって，大規模（すなわち高コスト）な地上インフラを整備 することなく，利便性と安全性を革新的に向上する運航システムを作ろうというものです。

DREAMSで

実現する技術

DREAMSで，何ができるようになるのでしょうか。「データ通信」と「衛星航法」を使った二つの革新技術を中心に紹介します。

■適応型飛行経路誘導

通常，離着陸の際，パイロットは管制官と音声で通信を行い飛行経路などを決定します。しばしば聞 き取りにくかったり，聞き違いが発生するのが難点 です。これに代わり相互にデータの送受信を行うこ とで，目標飛行経路を3次元的に画面に表示させ（図3）， またこの情報を他機とも共有し，互いが視覚的に確

認できるシステムを開発しました。
多くの航空機か飛行している状態（高密度運航）で，他機との安全な間隔を確保しつつ騒音を減少させる といつた状況に適した飛行経路を，コンピユータが処理してわかり易く図に示してくれるので，パイロッ トは画面に表示された経路をなぞるように操緃する だけで，最適な飛行を行うことができるというもの です。従来，複数の計器に個別に表示されている情報が，一つの画面に統合表示されるので，作業負荷 が軽減され，判断ミスの減少にもなります。これら の情報は付近を飛行する航空機間でも共有されるため，管制官のいない飛行場などにおいても，自律的に機体間隔を確保することが可能となります。2005年に，世界で初めてこのようなシステムの飛行実証に成功 しました。今後は，後に述べるCAPSTONEプログラ ムで提案されているデータ通信方式に適合すること により，世界標準として実用化を目指した開発を進 めていきます。
また，このシステムをさらに高度化し，悪天候を自動的に回避したり，エンジン故障のような緊急時 にパイロットの操縦を支援する自動飛行システムや，

図2 DREAMSで取り組む課題

将来的には車のように多くの人が簡単に操縦できる小型機の実現に向けた研究開発も行つていきます。 ■高精度航法システム

航法とは自機の位置や姿勢，速度などを知る方法 です。特に，天気が悪く周りがよく見えないような状況で他機との衝突を回避し，目的地へ安全に飛行 するためには，今どこをどのような状態で飛行して いるかを正確に知ることが重要です。

JAXAでは，全地球位置測定システム（GPS）と慣性航法装置（INS）（注2）を複合化した高精度航法装置 の開発を進めてきました。GPS衛星から送られてく る信号だけではなく，その電波の位相 ${ }^{(\text {注 } 3 \text { ）情報を用 }}$

いることによつて，航空機の自動着陸に必要な精度 を達成し，02年には無人機を用いた飛行実証を行い ました。DREAMSでは，さらにそれを小型機に適し たものにするため，我が国の得意分野である半導体製造技術の応用によって革新的に小型•軽量•低コ スト化（体積・コストを1／10に）することを計画し ています（図4）。

また，今年2月に2号機の打ち上げに成功した運輸多目的衛星（MTSAT）から送られてくる，GPSの精度や信頼性を向上する信号を利用することにより，万一のGPS衛星の故障にも素早く対応できるシステム の開発も進めています。

図 3 3次元経路表示＂Tunnel In the Sky＂

図4 超小型高精度航法装置 ＂Micro－GAIA＂の試作品

実用化に
向けて

7月からは，米国連邦航空局（FAA）がアラスカ州で実施している，次世代運航シス テムの基盤インフラの実証プ

ログラムである「CAPSTONE」に参加して飛行試験 を行いました（図5，12ページ参照）。日本国内では小型機で利用可能なデータ通信システムが未整備の ため，実運用下でのノウハウの調査•修得をしました。

CAPSTONEでは，小型飛行機に無線によるデータ通信装置を搭載することにより，付近を飛行する他機の位置情報や，飛行経路周辺の気象情報などの送信を行い，計器盤に表示するシステムが試験的に運用されています。併せて，GPSとその補強衛星（米国ではINMARSAT）を使つて高精度な航法を実現し ています。これらのシステムにより，小型機の事故発生率が約50 \％低減されています。

＊

これら先進技術の実用化に向けては，技術開発•実証のほかに，使いこなすためのルール作りも必要 です。JAXAは，今後も国内外の関連機関との連携を

深め，国際標準としての提案を目指していきます。
同時に，国内におけるDREAMS技術の実運用の第一歩として，救急•救助や，離島コミュータなど社会性•公共的ニーズの高い分野から試行的に適用す ることを目標としています。
（注1）場外離着陸場：空港として正式に認可されていないが，申請により一時的な使用が認められる離着陸場
滑空場：グライダー用の離着陸場
（注2）ジャイロ（姿勢の変化を検出する装置）と，加速度計 （速度の変化を検出する装置）を使って，出発点からの速度 や姿勢の変化を，コンピユータで計算することにより，自分の位置や速度を知る装置 （注3）電波の波長（GPS の場合 20 cm 程度）の中 のどの位置かという情報

図5 飛行試験に用いたJAXAの小型機

EロIルாா ロコラム

大規模災害救助活動て活躍するヘリコプタ

2004年10月23日に起きた新潟県中越地震は，避難者約10万人，住宅損壊約9万棟など囬大な被害を もたらしました。ここでは阪神淡路大震災の教訓を生かし，多数のへリコプ夕が活躍しました。災害時は，道路などの寸断により，陸路が使えない状況も珍し

に急激に飛行回数が減る状況は阪神淡路大震災から 10年たつても変わっていないことがわかります。ま た消防，警察，自衛隊，ドクターヘリなどに報道も加わつて，現地には多数のへリコプ夕が集まります。 DREAMSの技術が生かされるケースといえます。

いことではありません。ヘリコプタを使うことで，被災状況の情報収集，避難広報，医楽品や食料などの支援物資 の搬送，行方不明者の捜索，偒病人医師の搬送，孤立集落住民の救出•救助などに迅速に対応して著しい効果を みせました。飛行場以外の場所でも災害時には離着陸が認められるへリコプ夕だからこそできることです。

これら人命にかかわる救助は，災害発生後いかに迅速に対応できるかにか かっていますが，図からは，悪天侯曰

天候不良による影響の例

Research
 Report

環境に優しくシンプルな小型航空エンジン用燃焼器 の研究開発

環境適応エンジンチーム

旅客機の便数が年々増加して世界の距離が狭ま る一方で，エンジンからの排出ガスが大気環境に与える影響が懸念されています。そのため，国際民間航空機関（ICAO）では，民間用航空機の エンジン 1 台当たりの窒素酸化物（NOx），未燃炭化水素（HC），一酸化炭素（CO）などの有害な成分の排出量の基準（CAEP4）が決められており，旅客機にはその基準を満たすエンジンを用いることが求められています。

のような状況をふまえて，環境適応エンジン チームでは，環境に優しい小型航空機用エン ジンに用いる燃焼器の開発を行っています。前述の排出ガスの基準は数年ごとに厳しくなっているため， 10年程度先の基準を見据えて，排出量を現行の基準 よりさらに低いレベルまで削減する事を目指し，特 にNOx排出については，現行基準の50\％以下まで削減することを目標としています。また，小型航空機

用エンジンの市場で競争力を持つために，燃焼器と しての性能を維持しつつ，同時にコストを下げるこ とも目指しています。
構造がシンプルな燃焼器で，基本的な性能を確保 した上でNOxなどの排出を抑制するという難しい課題に対応するため，当チームで開発している燃燁器では， NOxが最も多く生成される割合で燃料と空気が混合 されないように，まず燃料の濃い状態で燃やし，直後に大量の空気と混ぜて薄い状態で燃やすという燃焼方式（Rich－Lean）を採用しています。さらに，濃く燃やす領域では燃料の粒を細かくして蒸発しやすくし， かつ空気とよく混ぜて均一な状態とするために，そ の用途で実績のある気流微粒化方式（空気の力で燃料を微粒化する方式）のシンプルな燃料ノズルを， この燃焼器に適するように改良して用いました。開発途中の段階で燃焼器全体をテストすることは大が かりで費用もかさむため，まず全体で16個ある燃料 ノズルのうち3個分の領域を取り出した燃㳣器で試験 を行いました（図1）。
開発対象となっているエンジンでは500ㅇ․ 17 気圧程度まで加熱•圧縮された空気が燃焼器に送られ て燃えるため，燃荧器をテストするための装置にも高温高圧で大量の空気を供給できる能力が必要です。そのため，総合技術研究本部の航空エンジン技術開発セン ターと共同で昨年度整備し た高温高圧燃焼試験設
備図2）を使用し，エン ジンの運転条件下で燃焼状態を観察しながら
（図3），排出ガスの成分や出口での温度分

図1 試験に用いたモデル燃焼器

エミッション低減セクション （後列左より）下平一雄，山田秀志 （前列左より）牧田光正，山本 武

図3 燃焼器後方のカメラによる火炎観察（アイドル条件）

図2 高温高圧燃焼試験設備での試験状況

布を計測しました。そこで得られたデータを燃焼器 の設計にフィードバックし，航空用燃焼器として必要な安定性能を維持しつつ，図4のようにNOxの排出量を目標値以下まで下げ，HCとCOについても大幅 に削減することに成功しました。
後は，これまでに得られたデータを基に燃焼器全体（環状燃焼器）を製作し，航空エンジ ン技術開発センターと共同で今年度整備している環状燃㸿試験設備にて試験を行い，実機の燃焼器と同等の状態て燃やした場合の性能を取得することにより将来の航空エンジン用燃焼器の開発に向けたデータ とノウハウを蓄積することを目指しています。
（牧田光正）

図4 燃焼器からの排出ガスと基準値•目標値の比較

Research

Report

飛行船の

フライトシミュレータ
無人機•未来型航空機チーム

昆新技術を使つて開発され，日本にも 1 機が輸入されたZepperin NTを始め，様々な用途に有人飛行船が見直されつつあります。しかし飛行船の免許を持つ操縱者は国内に18人ほど。定期運送用操縦士の資格を持っているのはわずか2人に過ぎません。 また，JAXAで研究開発が進められてきた成層圏プラ ットフォーム（きき1）飛行船や今後の研究が期待される LTA（Lighter Than Air：空気より軽い）型災害監視無人機なども制御系の設計や評価，有事の場合の操緱性の評価や訓練などのため，フライトシミュレー ションは欠かせません。
ここで紹介するFLOPS（Flight and Operation Simulator）は，成層圏プラットフォームプロジェ クトの一環として2004年に実施された定点滞空飛行試験（図1）のために，情報通信研究機構（NiCT） との共同研究によって開発された飛行船用フライト シミュレータです。ハードウエアとプログラムの基幹部分をNiCTが構築し，核となる飛行船の数値モデ ルをJAXAが開発しています。

FLOPSは自律誘導を行う飛行船の単体シミュレー ションもできる一方，操縱者が実際に操縱入力を与 えながらリアルタイムで操縱することもできます。

図1 定点滞空飛行試験

このため，飛行船の運動に合わせてコンピユータグ ラフィツクスによる外視界表示を行う画面と，計器表示を行う画面，操縱桿を中心とした操縱入力装置 を備えています（図2，3）。

行船の運動モデルは基本的には一般の航空機兆 と同じですが，いくつかの点で大きな違いが あります。軟式飛行船は船体の形状を内外の差圧で維持しているため，上昇•降下や日射などによる温度の変化に伴って外部の空気を給排気し，差圧の調整を行います。このため内部ガスを含めた船体の質量は飛行中に刻々と変化していくことになります。定点滞空試験機では地上で内部ガスを含む質量が約 $13 t$ あるのが，高度 $4,000 \mathrm{~m}$ では約 8 t にまで変化し ます。また，それに伴つて重心位置も変動するうえに，前後の空気室の内容量を調整することで積極的にト リム（静的なつり合い位置）を変動させたりするため，通常の航空機とは比較にならないほど大きく重心位置が変動します。そのため，飛行船の数値モデルに は日射など外部の環境条件，差圧調整機能に対応し た内部ガスモデルを持たせる必要がありました。
また，飛行船は船体が大きいわりに推進器のパワ一が小さいため，船体に働く空気力の誤差が，シミ

図2 FLOPS操縦装置と表示画面

LTAシステム技術セクション （後列左より）前川昭二，奥山政広 （前列左より）中舘正顯，河野 敬，友井康人

実フライトと同等の風条件
でのシミュレーション

図3 FLOPSによる操縦風景

ユレーション結果に大きく効いてきます。このため，風洞（注2）試験などで極力精度の高い空力特性を得た ほか，牽引水槽での試験で必要な動特性の取得など も行いました。また一般の航空機のシミュレーショ ンでは考慮されない要素についても考慮に入れなけ ればなりませんでした。

定点滞空飛行試験の実運用フェーズでは，この FLOPSを用いて，遠隔操縦入力，風観測•予測シス テムから取り込んだ予測風パターンなどを含んだシ ミュレーションを実施し，これにより地上無線操縦者の訓練や地上無線操縦者のコメントによる誘導制御則の改良，実験当日の予測風パターン下における飛行計画の検証などを行うことができました。この ようなシミュレーションにより誘導制御則の健全性， フライトの安全性の確認に大きく寄与した他，実際 の飛行試験に関わる多数の担当者が実際の飛行に先立ってフライトのイメージを共有するためにも大変有効に働きました。実フライトの結果得られたデー夕はシミユレーションの予測と良好に一致しており
（図4），また操縦者からも実機の特性が非常によ く模擬されていたとのコメントがありました。この

ように実フライトとの比較で検証された飛行船用シ ミュレータは世界でもあまり例のない存在といえま す。

合後はさらなる精度の向上などを図る一方，内部の飛行船モデルを変更することで様々な飛行船の評価•訓練などに応用できるようにしていく ことを目指しています。
（河野敬）
（注1）気象条件が比較的安定している高度20km程度の成層圏に通信機材，観測センサなどを搭載した無人の飛行船 を滞空させ，通信•放送，地球観測などに利用しようとい うもの
（注2）送風機などで一様な風を吹かせる風路の中に，模型などを入れて，それに働く力や周り流れの様子などを調 べるのに使う施設

ウーメラでももちろんサッカーをしました
（最前列右から 2 番め）

つ か 何 学 校 てっか科
 れでなそ覧時馹

 こHtor

 N世世

 で
た
た
で
$し$
し
う
は
と
飛
機
に
乗
た
た
杗
学
に
入

 に
決
あ
し
た。

牧
野
私
齐
采
科
胃
嫌
い第た
郭
園
語
英
語
信
嫌
で
で

行

 な
い
は
は
\vdots
た
た
は
や
な
$い ~$
と

 ＊㽧納

 ス
ス
な
様
各
な
ス
ス
い
に
に
親

边二天边

 そた

郭 東潤
空力設計技術セクション
大学院では航空宇宙工学を専攻

ウーメラ実験場で，
ソニックブーム計測用マイクロフォンを
実験前に設置

「NEXST－1」 6 血い巡

 ないのが

「静かな超音速機」の理想的な形を探す

2005年の小型超音速実験機の飛行実験により
得られた成果をもとに，現在，次のフェーズの
超音速機チーム 牧野好和 - 郭 東潤

変

郭
設
話
さ
れ
た
形
に
作
\vdots
れ
た

 て
欲
$い$
い
や
小
さ
\vdots
魚
形

 $=\approx$

郭
設
計
密
要
な
信違
い
は
？風
洞
と
C
F
F
の

牧野好和
 空力設計技術セクション

大学院では航空宇宙工学を専攻

IDLR－ONERA－JAXA会議開催結果

9月21日•22日に，JAXA航空宇宙技術研究センターにおいて，DLR－ ONERA－JAXA会議が開催されました。これは，DLR（ドイツ航空宇宙センター）， ONERA（フランス航空宇宙研究所）およびJAXAの間で進められている共同研究の進渉状況を確認し，各共同研究テーマごとにその延長•終了などを議論 する会議で，今回は継続 8 件，終了 3 件，新規 2 件が了承されました。また， 3 機関の共同研究を一層推進するための議論も行われ，分野ごとにコーディ ネータを指名し，技術的な情報交換 を行い，新規提案を促進することも合意されました。

次回は2007年9月にドイツで開催 することが決まり，同年 6 月のパリ エアショーに合わせて技術的な会合 の開催が提案されました。
（企画推進室）

I米国連邦航空局（FAA）との協力により飛行試験を実施

JAXAは，米国の連邦航空局（Federal Aviation Administration）がアラス カ州で進めているCAPSTONEプログラムに参加し（特集記事参照），飛行試験を実施しました。7月から10月にかけて約30回の飛行を行い，データ通信によって航空機の位置情報や周辺の気象情報を共有して小型航空機の安全性を向上するシステムの性能や信頼性を評価しました。来年度からは日本国内でこのデータ通信システムの試験的な運用を開始し，DREAMSの研究開発に活用していく予定です。

9月29日には航空プログラムグル ープの坂田統括リーダらが現地を訪れ， CAPSTONEのプログラムマネージャ であるSusan Gardner氏らと会談し，飛行試験の実施への協力にお礼を述 べるとともに，今後もより一層連携 を深めていくことを確認し合いました。 （運航•安全技術チーム）

