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• 航空機由来のCO2削減手法の一つとして
航空機の電動化・ハイブリッド化が提案

• エンジンの動力を発電機で抽出し最適配
置した電動ファンを駆動することで推進
効率向上

• ターゲット航空機：200人乗り旅客機

• 電動ハイブリッドシステムの採用により
数％の燃費向上が期待

2研究背景・目的
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本研究対象の位置付け
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近年の電動航空機研究状況

FEATHER

(JAXA) ※1 

GE

（NASA）※2 

イリノイ大学
（NASA）※3 

本研究目標値

状態 飛行経験あり 実験段階（発電機接続） 実験段階（RL負荷） 実験段階(モータ接続)

インバータ方式 Si-IGBT 2L SiC+Si 3L-ANPC GaN 9L FCML マルチレベル回路を検討

DC電圧 128 V 2400 V(±1200 V) ±500 V 1000 V or ±500 V

容量 15 kW *4 1 MW
5.8 kW/ユニット
（目標10 kW）

500 kW *4 =2 MW

効率 93％ 99.1 %@1.2 MVA
98.5%@2.5 kW

(目標 98%以上)
99%～@500 kW

出力密度 4.2 kW/kg
14.3 kW/kg

(冷却系含まず)

12 kW/kg

(目標12以上)

19 kW/kg 以上
(冷却系含まず)

冷却 液冷 液冷 液冷 液冷

出力密度19kW/kg以上のインバータを検討する
⇒500kW インバータの総質量目標値 26.3kg

1. “航空機用電動推進システム技術の飛行実証” JAXA 研究開発資料 2017

2. D. Zhang, J. He, D. Pan, M. Dame and M. Schutten (GE), "Development of A High-Power Density Megawatt-Scale Medium-Voltage Power Converter for 

Aircraft Hybrid-Electric Propulsion Systems," 2019 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), Indianapolis, IN, USA, 2019, pp. 1-6, 2019.

3. T. Modeer, N. Pallo, T. Foulkes, C. B. Barth and R. C. N. Pilawa-Podgurski, "Design of a GaN-Based Interleaved Nine-Level Flying Capacitor Multilevel 

Inverter for Electric Aircraft Applications," in IEEE Transactions on Power Electronics, vol. 35, no. 11, pp. 12153-12165, Nov. 2020.

4. R. Jansen, C. Bowman and A. Jankovsky (NASA), "Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender," AIAA 

2016-3766. 16th AIAA Aviation Technology, Integration, and Operations Conference. June 2016.

効率・出力密度目標値※4



本研究対象の位置付け
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近年の電動航空機研究状況（2020年以降）

Irt Saint Exupéry

※5

バージニア工科大学

※6

ノッティンガム大学
※7

GE
※8

華中科技大学※9

状態

インバータ方式 SiC 2LVSI SiC 3LT2I Si IGBT 3LNPC SiC+Si 3L-ANPC SiC 3LANPC

DC電圧 540 V 740 V 3 kV 2.4 kV 1 kV

容量 70 VA 200 kW 4 MW 1 MW 1 MW

効率 99.4％ 99.07% 92.5% 99% 99%

出力密度 15 kW/kg 19.7 kW/kg 20.8 kW/L 10 kW/kg 18 kVA/kg

冷却 空冷 液冷 空冷 液冷 極低温冷却

5. D. H. Tran, B. Cougo, G. Segond and H. H. Sathler, "Optimal design of a three-phase 540V/70kVA SiC inverter for aircraft applications," 2023 IEEE International Conference on Electrical Systems 

for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Venice, Italy, 2023, pp. 1-6, 2023.

6. X. Zhao et al., "Design and Implementation of SiC-Based 200-kW High-Density High-Speed High-Altitude Electric Propulsion AC Drive System," in IEEE Journal of Emerging and Selected Topics 

in Power Electronics, vol. 12, no. 5, pp. 5176-5199, Oct. 2024.

7. A. Trentin et al., "Research and Realization of High-Power Medium-Voltage Active Rectifier Concepts for Future Hybrid-Electric Aircraft Generation," in IEEE Transactions on Industrial Electronics, 

vol. 68, no. 12, pp. 11684-11695, Dec. 2021.

8. D. Pan, D. Zhang, J. He, C. Immer and M. E. Dame, "Control of MW-Scale High-Frequency “SiC+Si” Multilevel ANPC Inverter in Pump-Back Test for Aircraft Hybrid-Electric Propulsion 

Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 1, pp. 1002-1012, Feb. 2021.

9. R. Chen et al., "A Cryogenically-Cooled MW Inverter for Electric Aircraft Propulsion," 2020 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS), New Orleans, LA, USA, pp. 1-10, 2020.



Power Density Analysis of Dual Multilevel Inverters
for Hybrid-Electric Aircraft Propulsion Systems

Keiji Wada, Katsuya Shingu,

Ryo Shirai, Ryosuke Ota

(Tokyo Metropolitan University)

Yutaro Tawara, Hidemine Obara

(Yokohama National University)



想定するパワーエレクトロニクスシステム
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設計目標値に対するアプローチ
①電力変換効率 99 % ⇒ インバータ回路方式ごとの素子損失解析
②出力電力密度 19 kW/kg ⇒ 半導体素子の熱解析によるヒートシンク質量の見積もり

基本波周波数 1 kHz

搬送波周波数 20 kHz

PWM 変調率 0.8

力率 0.8



パワーエレクトロニクスシステムの効率と重量の算出
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回路シミュレータ（PLECS）

・回路損失解析

・熱成立性確認

半導体モジュール

・定格電圧/電流からパッケージ選定

⇒体格、質量を決定

・シミュレーションモデルを入手

ヒートシンク

・モジュール体格からヒートシンク体格を決定

⇒質量、熱抵抗を算出

インバータシステムの効率と質量を算出

モジュール体格

ヒートシンク
熱抵抗

シミュレーションモデル
（電気特性・損失情報を含む）



シミュレーションモデル概要
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• 汎用回路シミュレータ PLECSを使用

• メーカー配布モデルにて、導通損失/SW損失の見積もりが可能

• 放熱経路を模擬することでジャンクション温度の見積もりが可能

ヒートシンクを模擬した
熱回路を形成主回路部

メーカー配布
素子モデルを入力

半導体モデル一例
（Vds 特性マップ）

Tj
Id

Vds

※ターンオン損失・ターンオフ損失も
同様にマップ上で演算

◆アウトプットイメージ
（ジャンクション温度）

Time

Tj

※温度飽和するまで解析を実
施



回路構成： 大容量のためマルチレベルインバータ方式の適用が有力
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回路方式 Q1,Q4 Q2,Q3 Q5,Q6

NPC SiC-MOSFET SiC-MOSFET Si-Dioede

ANPC1 SiC-MOSFET Si-IGBT SiC-MOSFET

ANPC2 Si-IGBT SiC-MOSFET SiC-MOSFET

ANPC3 SiC-MOSFET SiC-MOSFET SiC-MOSFET

ANPC4 SiC-MOSFET SiC-MOSFET SiC-MOSFET

FC SiC-MOSFET SiC-MOSFET -

Q1

Q2

Q3

Q4

Q6

Q5

・各種回路方式、変調方式ごとに素子の使い分けを実施

搬送波スイッチング素子⇒SiC-MOSFET

基本波スイッチング素子⇒Si-IGBT

◆使用した半導体モデル

Q1

Q2

D5

D6
Q3

Q4

Q1

Q2

Q3

Q4

NPC回路 ANPC回路
※4種の変調方式で実施

FC回路



デュアルインバータ回路構成
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オープン巻き線モータ
力率：0.8

出力電力：500kW

INV1 INV2位相差：180°

INV1 (ANPC PWM4) INV2 (ANPC PWM4)

M

2台のインバータで駆動することでモータ印加電圧を最大2倍
⇒モジュール電流を低減可能



シミュレーション波形

MotorMotor
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-1000A

定格電流の1/2程度のパワーモジュールを使用可能

589 Vrms

228 Arms

Conventional inverter Dual inverter

-1000A

1000A

IQ2  is the current of MOSFETs used in ANPC 3Level inverter 
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1000V
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Vo

Io

IQ2

307 Vrms

461 Arms

737 Arms



パワーモジュール選定
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・電動航空機向けインバータシステム軽量化のためパワーモジュールを選定

パッケージ HM DM GM Easy3B Easy2B Easy1B

メーカー Wolfspeed Wolfspeed Wolfspeed Infineon Infineon Infineon

型番 CAB760M12HM3 CAB003M09DM3 CAB004M12GM4
FF2MR12W3M1H_B

11
FF4MR12W2M1HP_

B11
FF08MR12W1MA1_

B11A

定格電圧 1200 V 900 V 1200 V 1200 V 1200 V 1200 V

定格電流 760 A 350 A 200 A 400 A 200 A 150 A

質量 179 g 40 g 39 g 78 g 39 g 24 g

定格電流/重量 4.2 A/g 8.8 A/g 5.1 A/g 5.1 A/g 5.1 A/g 6.25 A/g

パッケージ

ANPC PWM4 構成でのパワーモジュール電流実効値 470 Aｒｍｓ ⇒ HMパッケージ適用が必要
350 A程度のパワーモジュール（DMパッケージ）を適用できれば、モジュール1個当たり75 %軽量化が可能

1素子あたりの電流を低減可能な回路構成を検討 ➔デュアルインバータ方式が一案



パワー半導体デバイス損失の算定結果
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• 今回の条件では、ANPCを用いたデュアルインバータ構成が最も損失を低減可能



ヒートシンク質量見積もり

モジュール冷却面積 51.6mm×40.8mm

⇒60 mm × 50mm =3000mm2のヒートシンク使用を前提として
質量・熱抵抗を見積もる

デュアルインバータ構成
において適用するパワーモジュール

51.6mm40.8mm

Calculation Results of heatsink 

thermal resistance for CAB003M09DM3

Commercially available heatsink

Approximate curve
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ヒートシンク体格
60 mm × 50mm × 19 mm

市販品の近似曲線熱抵抗を算出
⇒0.067 ℃/W

市販品との体積比から質量を算出
⇒150 g 
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dv/dtフィルタ
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• EMI低減のため、出力電圧dv/dtの目標値を
1.8 kV/µsとするフィルタを設計（GEを参考）

• ダンピングファクタ（DF）を考慮

DF=
𝑅

2

𝐶

𝐿

3-level ANPC inverter Dual ANPC inverter (5-level output)

Motor
dv/dt filter

Motor

dv/dt filter dv/dt filterVo Vo

Target: dvo/dt = 1.8 kV/µs Target: dvo/dt = 1.8 kV/µs

Considered parameters Value

dv/dt of filter output voltage 1.8 kV/µs

Voltage drop of filter Less than 3% for output voltage

Peak current of capacitor Less than 5% for output current



dv/dtフィルタの設計（重量計算）
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Inverter topology
LC Product

 [10^-18HF]
DF

3-level ANPC and

Dual inv. (1 kVdc input)

79,050 0.5

170,000 0.75

300,000 1.0

Dual inv. 

(500 Vdc input)

19,350 0.5

44,000 0.75

76,000 1.0

1.8 kV/µsを実現するLC積

1. Inductor design

2. Capacitor design

3. Register design

エリアプロダクト法により算定

Parameters Value

Window factor 𝐾𝑢 0.5

Maximum magnetic flux density 𝐵𝑚 [T] 1.0(nanocrystalline)

Line current density 𝐽𝑤 [A/cm2] 2.1×102 (1 kVdc)
3.2×102 (500 Vdc)

Core form factor 𝐾𝑤 [g/cm4] 77.6

𝑊 = 𝐾𝑤
10000𝐿𝐼2

𝐾𝑢𝐵𝑚𝐽𝑤

3
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y = 2.931x
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実際のフィルムコンデンサの特性から算定

実際の抵抗器の特性から算定

y = 0.002x

0
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]
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metal clad resistor)



DCリンクコンデンサの設計
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y = 4.32x
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電圧リプル（静電容量）による設計

𝐼𝑑𝑐𝑛 =
𝑉𝑚
𝐸𝑑𝑐

𝐼𝑚 ⋅ 𝑘𝑖 𝜃, 𝜙 𝛥𝑉𝑐𝑛 =
1

2𝜔𝐶𝐷𝐶𝑆𝐶
න𝐼𝑑𝑐𝑛 𝑑𝑡

耐リプル電流による設計

Film capacitors 
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耐リプル電流による計算値(362 Arms)

電圧リプルによる計算値

耐リプル電流による制約の方が厳しいため、
重量は耐リプル電流による計算値を適用



DCリンクコンデンサおよびdv/dtフィルタの重量算定結果
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• フィルタとDCコンデンサの重量は、トポロジと

条件によって異なる

• デュアルインバータでDC電圧を500Vに変更す

ると、電流が低減できないためDCコンデンサ

の重量が増加

• デュアルインバータは、DCコンデンサとフィル

タの重量を最も軽くできる
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ANPCデュアルインバータを用いた際の総重量算定結果
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• 出力密度19kW/kgを実現するために必要な目標重量26.3kgの85.6%

• ただし、実際のシステムではケーブル、筐体、冷却水などの他の要素の重量も考慮する必要があるため、さらなる
軽量化が必要

➢システム構成、ノイズ（フィルタ）設計などのさらなる検討が必要

0 5 10 15 20 25 30

Weight [kg]
Target for 19 kW/kg

Converter

Inverter

DC link cap.

dv/dt filter



まとめ
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• ハイブリッド電動航空機向けパワーエレクトロニクスシステムの設計として重量出力密度19kW/kgを目標とした検討
を行った

• パワー半導体デバイス+冷却系、DCリンクコンデンサ、dv/dtフィルタの設計手法について検討し、設計例を提示

• 回路構成は「3レベルANPCを用いたデュアルインバータ方式」が有力候補だが、モータも含めたシステム全体を考慮
した設計が必要

• 重量出力密度19kW/kgを実現する設計例を示したが、さらなる軽量化設計が求められる

謝辞

本研究の一部は、文部科学省宇宙航空科学技術推進委託費/宇宙航空脱炭素技術等創出プログラムの支援を受けて行われた。


	スライド 1: 航空機電動化のための パワーエレクトロニクスシステムの研究開発
	スライド 2: 研究背景・目的
	スライド 3: 本研究対象の位置付け
	スライド 4: 本研究対象の位置付け
	スライド 5: Power Density Analysis of Dual Multilevel Inverters for Hybrid-Electric Aircraft Propulsion Systems
	スライド 6: 想定するパワーエレクトロニクスシステム
	スライド 7: パワーエレクトロニクスシステムの効率と重量の算出
	スライド 8: シミュレーションモデル概要
	スライド 9: 回路構成：　大容量のためマルチレベルインバータ方式の適用が有力
	スライド 10: デュアルインバータ回路構成
	スライド 11: シミュレーション波形
	スライド 12: パワーモジュール選定
	スライド 13: パワー半導体デバイス損失の算定結果
	スライド 14: ヒートシンク質量見積もり
	スライド 15: dv/dtフィルタ
	スライド 16: dv/dtフィルタの設計（重量計算）
	スライド 17: DCリンクコンデンサの設計
	スライド 18: DCリンクコンデンサおよびdv/dtフィルタの重量算定結果
	スライド 19: ANPCデュアルインバータを用いた際の総重量算定結果
	スライド 20: まとめ

